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Consider an homogeneous elastic bar of length l, mass M , and longitudinal stiffness k;
thus N̄ = k∆l is the axial force that causes a static elongation ∆l over the whole length l
of the bar. The first end of the bar is fixed, while at the second end a suspended mass
m is attached.

Let u(x, t) be the longitudinal displacement at a point x ∈ [0, l] along the bar. The
mean unit elongation ε̄(t) = ∆l/l can be expressed as

ε̄(t) =
u(l, t)− u(0, t)

l
,

while at point x the unit elongation ε(x, t) is

ε(x, t) = lim
∆x→0

u(x+∆x, t)− u(x, t)

∆x
=

∂u(x, t)

∂x
. (1)

If the unit elongation is constant along x at a time t, i. e. ε(x, t) = ε̄(t), we have

N̄(t) = k∆l = kl
∆l

l
= kl ε̄(t);

more generally, if the bar is homogeneous along x, we may assume

N(x, t) = kl ε(x, t), (2)

where N(x, t) is the axial force at point x and time t.
The equilibrium of a generic bar element with respect to translation may be written

as
−N(x, t) +N(x+∆x, t)−

∫ x+∆x

x

M

l

∂2

∂t2
u(x̃, t) dx̃ = 0,
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where M/l = const. is the lineic mass. In differential form this equation becomes

∂N(x, t)

∂x
− M

l

∂2

∂t2
u(x, t) = 0. (3)

Combining eqs. (1)–(3) one obtains

∂2

∂x2
u(x, t) =

1

c2
∂2

∂t2
u(x, t), (4)

with
1

c2
=

M

kl2
.

Constant c = l
√

k
M is the longitudinal wave speed: therefore

Tw =
l

c
=

√
M

k
, (5)

is the time needed by an elastic wave to travel from one and to the other of the bar.
Equation (4) is known as the wave equation.1 To solve this equation for steady state
vibrations one needs boundary conditions at x = 0 and x = l, while initial conditions at
say t = 0 are not relevant.

The x = 0 end is fixed, so that

u(0, t) = 0, ∀t. (6)

At x = l there is equilibrium between the suspended mass inertial force, −m ∂2

∂t2
u(l, t),

and the axial force N(l, t) = kl ∂u
∂x(x, t)|x=l:

kl
∂u

∂x
(x, t)|x=l = −m

∂2

∂t2
u(l, t).

Taking into account eqn. (5), this condition can be rewritten as

l
∂u

∂x
(x, t)|x=l = −m

M
T 2

w
∂2

∂t2
u(l, t), ∀t, (7)

which is the desired boundary condition at x = l.
By separation of variables one can look for a solution of the form

u(x, t) = X(x)A(t) (8)

where X(x) is a real-valued function, with the dimensions of a length, representing the
time-invariant “shape” of the displacement; the real function A(t) is a dimensionless,
time-dependent, amplitude. Substituting the above assumption in (4), gives rise to

A(t)
d2

dx2
X(x) =

1

c2
X(x)

d2

dt2
A(t),

1Please note that equations (4) and (5) are still valid when M = 0: one has 1/c = 0, i. e. the r. h. s. is
vanishing.
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or
1

X(x)

d2

dx2
X(x) =

1

c2
1

A(t)

d2

dt2
A(t).

This latter expression can be rewritten in a dimensionless form by using eqn. (5) as

l2

X(x)

d2

dx2
X(x) =

T 2
w

A(t)

d2

dt2
A(t).

The above equations holds for any x and t, therefore the l. h. s. and the r. h. s. have to
be constant and equal: 

l2

X(x)

d2

dx2
X(x) = p,

T 2
w

A(t)

d2

dt2
A(t) = p,

where p is a dimensionless real number. By posing p = −α2 one has to solve

d2

dx2
X(x) = −α2

l2
X(x),

d2

dt2
A(t) = −α2

T 2
w
A(t),

and the general solution is

X(x) = U1 cos
(
α
x

l

)
+ U2 sin

(
α
x

l

)
,

A(t) = A1 cos
(
α

t

Tw

)
+A2 sin

(
α

t

Tw

)
.

It is easy to show that the solution which represents steady state vibrations is attained
when α and U1, U2, A1, A2 are all real, i. e. p ≤ 0.2

The integration constants U1, U2, A1, A2, and parameter α have to be determined
from the boundary conditions. Eqn. (6) implies U1 = 0, while eqn. (7) becomes

α cos(α)U2A(t) =
m

M
α2 sin(α)U2A(t);

the trivial solution α = 0, which gives rise to u(x, t) = 0, can be neglected. In order to
solve this equation we assume m ̸= 0 and α ̸= 1

2π + nπ, obtaining

α tanα =
M

m
, (9)

2When p > 0, α becomes imaginary; nevertheless the given solution is still valid: remembering that
cos(iθ) = cosh θ and sin(iθ) = i sinh(θ) it is possible to choose integration constants in order to have
real X(x) and A(t). However, since the hyperbolic trigonometric functions are non periodic, the case
p > 0 is not relevant to the present problem.
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which shows that α depends only on the M/m ratio. The remaining integration constants
are not determined, but it is possible to rewrite solution (8) as

u(x, t) = U0 sin
(
α
x

l

)
cos

(
α

t

Tw
+ φ

)
, (10)

with

−U0 sinφ = U2A2, U0 cosφ = U2A1,

actually showing that, as one might expect, the amplitude and the phase angle of the
vibration are not determined. Without loss of generality we will assume in the sequel
that φ = 0.

We will first discuss the case in which M ̸= 0, i. e. α ̸= nπ. If Ū is the elongation at
x = l, the solution (10) can be written as

u(x, t) =
Ū

sinα
sin

(
α
x

l

)
cos

(
α

t

Tw

)
, (11)

where α is the solution to eqn. (9), with m ̸= 0. From eqn. (11) it is clear that α
and −α represent the same solution: therefore only the positive solutions, α > 0, have
to be considered. For a given M/m ratio equation (9) has infinite positive solutions,
confirming that a continuous system has infinite vibrational modes.

For each mode the period T of the oscillation is given by

T =
2π

α
Tw, (12)

while
v(x) =

1

sinα
sin

(
α
x

l

)
(13)

is the modal shape.
For a vanishing suspended mass, m = 0, we have

α =
π

2
+ nπ,

with n = 0, 1, 2, . . .. It is easy to show that eqn. (11) is still valid and satisfies all problem
equations: (4), (6), and (7) with m = 0. Defining Tf as the period of the fundamental
mode (n = 0) for a vanishing suspended mass, one has

Tf = 4Tw = 4

√
M

k
;

the corresponding shape becomes v(x) = sin(π2x/l).
On the contrary, when M → 0, α → nπ. To compute the limiting value of the period,

since Tw → 0, eqn. (12) has to be rewritten as

T =
2π

α

√
m

k

M

m
= 2π

√
m

k

√
tanα

α
;
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taking the limit one has

lim
α→nπ

√
tanα

α
=

{
1 if n = 0,
0 if n > 0,

showing that

To = 2π

√
m

k
, (14)

is the period of the fundamental mode (n = 0) when the mass M of the bar vanishes.
The limiting shape of this mode is v(x) = x/l; again all equations are satisfied, showing
that this is a legitimate solution. On the contrary, higher order modes degenerate to
the trivial u(x, t) = 0 solution; in other terms the solution of the wave equation for the
massless elastic bar reduces to the solution of the simple harmonic oscillator.

It can be convenient to express the period T of the fundamental mode in a form which
is similar to the period of the harmonic oscillator:

T = 2π

√
m+Meq

k
, (15)

where Meq is an equivalent mass, which accounts for the elastic bar mass. By equat-
ing (12) and (15),

2π

α

√
M

k
= 2π

√
m+Meq

k
,

one has, exploiting eqn (9),

Meq = M

(
1

α2
− m

M

)
= M

(
1

α2
− 1

α tanα

)
.

Defining a coefficient β,
β =

1

α2
− 1

α tanα
, (16)

which is via eqn. (9) a function of m/M , one finally has

T = 2π

√
m+ βM

k
. (17)

Values of β as a function of m/M are given in figure 1.
It is a simple calculus exercise to show that

lim
α→0

β =
1

3
, lim

α→π
2

β =
4

π2
;

more specifically

0,405 ≈ 4

π2
> β >

1

3
≈ 0,333

where bigger β corresponds to M ≫ m, and smaller β to M ≪ m.
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Figure 1: Values of β as a function of m/M .

It should be clear that period T given by eqn. (17) is exact, if the correct value of β,
defined by eqn. (9) and (16) and represented in fig. 1, is used. In practice, when m ≫ M ,
a common first order approximation is to assume β = 1

3 , or

To,1 = 2π

√
m+ 1

3M

k
. (18)

Thus when computing the period of oscillation of a suspended mass, one can use

• the exact expression T , given by eqn. (12) or eqn. (17),

• the approximate value To,1 of eqn. (18), valid for m ≫ M , or

• neglect altogether mass M and use To, eqn. (14).

These last two assumptions are associated with relative errors |To−T |/T and |To,1−T |/T
which are depicted in figure 2.
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Figure 2: Errors |To,1 − T |/T (solid line) and |To − T |/T (dashed line) as a function of
m/M .
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