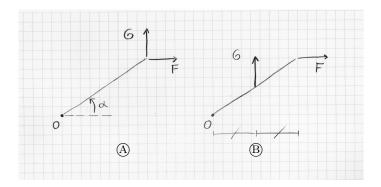
Soluzioni

ESERCIZIO 1.

Le due leve sono libere di ruotare nell'estremo O ed hanno applicate delle forze F e G di direzione ed intensità fisse (|F| = |G|). Determinare l'angolo α per il quale si ha equilibrio.



SVOLGIMENTO 1.

Per risolvere questo esercizio si può semplicemente imporre che il momento delle forze applicate sia nullo rispetto al centro di rotazione della leva.

(A) Sia l la lunghezza della leva. L'equazione

$$Gl\cos\alpha - Fl\sin\alpha = 0$$
,

tenuto conto che G=F, si semplifica in $\cos \alpha = \sin \alpha$, dalla quale si ottiene

$$\alpha = \frac{\pi}{4} + n\pi.$$

B In modo del tutto analogo si ha

$$G\frac{l}{2}\cos\alpha - Fl\sin\alpha = 0;$$

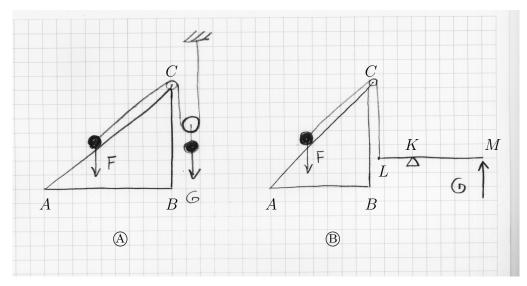
da questa si ottiene $\frac{\sin \alpha}{\cos \alpha} = \frac{1}{2}$, cioè

$$\alpha = \arctan \frac{1}{2} + n\pi.$$

Nelle formule precedenti $n=0,\pm 1,\pm 2,\ldots$, cioè si hanno infinite soluzioni. Ovviamente solo due soluzioni sono distinte in quanto due valori di α che differiscono di un angolo giro (2π) danno luogo a configurazioni geometriche coincidenti: per questo motivo si può anche porre m=0,1.

ESERCIZIO 2.

Determinare F/G, individuando sul disegno le eventuali grandezze geometriche di interesse.



SVOLGIMENTO 2.

Il principio dei lavori virtuali per entrambi i sistemi si scrive

$$F \cdot dy_F + G \cdot dy_G = 0,$$

dove dy_F e dy_G sono le componenti di spostamento dei punti di applicazione delle forze nella direzione delle forze stesse. Da questa equazione si ottiene

$$\frac{F}{G} = -\frac{dy_G}{dy_F}.$$

Per risolvere l'esercizio basta dunque determinare il valore di dy_G/dy_F . Chiamato $d\xi$ lo spostamento virtuale del peso F lungo il piano inclinato (positivo dall'alto verso il basso), in base a considerazioni sui triangoli simili, si ottiene $d\xi: dy_F = CA: CB$, cioè

$$dy_F = d\xi \frac{CB}{CA}.$$

(A) Per la presenza della carrucola doppia si ha

$$dy_G = -\frac{d\xi}{2}$$

e dunque con ovvie sostituzioni e semplificazioni

$$\frac{F}{G} = \frac{1}{2} \frac{CA}{CB}.$$

B Per la leva LKM, chiamato dy_L lo spostamento virtuale di L (positivo verso l'alto), si ha $-dy_L$: $LK = dy_G : KM$, da cui, tenuto conto che $d\xi = dy_L$,

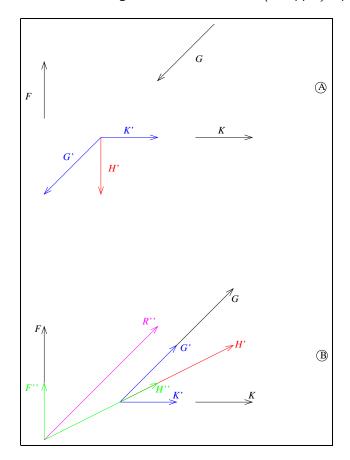
$$dy_G = -d\xi \frac{KM}{LK}.$$

Si ottiene dunque

$$\frac{F}{G} = \frac{KM}{LK} \frac{CA}{CB}.$$

ESERCIZIO 3.

Ridurre graficamente i sistemi di forze assegnati ad una sola forza (o coppia) equipollente.



svolgimento 3.

Lo svolgimento di questo esercizio è grafico. Si ricorda che due sistemi di forze sono equipollenti quando hanno stessa risultante e momento risultante rispetto ad ogni polo.

- A Nel primo caso il sistema ha risultante nulla e momento diverso da zero. Un sistema equipollente è quello rappresentato dalla coppia H'F.
- B In questo caso la risultante è nulla. Un sistema equipollente è rappresentato dalla forza R''.

ESERCIZIO 4.

Determinare il diagramma delle azioni interne per le seguenti aste.

$$A_x = 1 \text{ N}$$
 $B_x = 2 \text{ N}$
 $C_y = 9 \text{ N}$
 $D_x = -4 \text{ N}$
 $E_x = 1 \text{ N}$
 $D_y = -6 \text{ N}$

$$G_y = 2 \text{ N}$$
 $F_y = -12 \text{ N}$

$$l=18~\mathrm{m}$$

SVOLGIMENTO 4.

Nelle pagine seguenti sono riportati i diagrammi richiesti. Si noti che N e T sono misurati in Newton [N], mentre M è misurato in Newton-metro [N].

